Y must be a simple array of rank 2 or less. Y must be non-singular. If Y is a scalar, it is treated as a one-element matrix. If Y is a vector, it is treated as a single-column matrix. Y must have at least the same number of rows as columns.
R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square matrix. That is, R+.×Y is an identity matrix.
The shape of R is ⌽⍴Y.
Examples
M 2 ¯3 4 10 +A←⌹M 0.3125 0.09375 ¯0.125 0.0625
Within calculation accuracy, A+.×M is the identity matrix.
A+.×M 1 0 0 1 j←{⍺←0 ⋄ ⍺+0J1×⍵} x←j⌿¯50+?2 5 5⍴100 x ¯37J¯41 25J015 ¯5J¯09 3J020 ¯29J041 ¯46J026 17J¯24 17J¯46 43J023 ¯12J¯18 1J013 33J025 ¯47J049 ¯45J¯14 2J¯26 17J048 ¯50J022 ¯12J025 ¯44J015 ¯9J¯43 18J013 8J038 43J¯23 34J¯07 2J026 ⍴x 5 5 id←{∘.=⍨⍳⍵} ⍝ identity matrix of order ⍵ ⌈/,| (id 1↑⍴x) - x+.×⌹x 3.66384E¯16